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LETTER TO THE EDITOR 
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Panepistimiopolis, Athens 621, Greece 
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Abstract. A specific vertex model is defined on a square lattice whose point set is partitioned 
into two subsets {A} and {B}. It is shown that if the A-B pattern of the partition does not 
contain elementary squares with an odd number of A points, then the vertex model is 
equivalent to an Ising model on a graph G. In order to construct the graph G, we make use 
of the properties of the A-B pattern on the square lattice. Several examples are examined 
and three different possibilities of behaviour are found, i.e., ‘two-dimensional’ Ising-type 
transitions, ‘one-dimensional’, and ‘frozen in’ behaviour. 

An A-B square lattice is a square lattice of N = Na + NB points whose point set is 
partitioned into a subset {A} of NA points, and a subset {B} of NB points. For each of the 
2N different A-B square lattices we may define the following vertex model: 

The summation is extended over all possible six-vertex configurations C on the square 
lattice. The Boltzmann weights we and w; correspond to the six different kinds of 
vertices (5 = 1,2 ,  . . . , 6 ;  figure 1) at the A and B points respectively, and Q denotes a 
specified A-B square lattice. If Q is the alternating A-B square lattice, then the vertex 
model (1) is equivalent to the (zero-field) Ising model on a square lattice with N/2 points 
and diagonal boundary conditions (Malakis 1979). The alternating A-B square lattice is 
an A-B square lattice in which every elementary square is an alternating A-B cycle (i.e. 
-A-B-A-B-). Let us relax this condition and define an even A-B square luttice by the 
restriction that every elementary square has an even number (0,2, or 4) of A points. 
Henceforth, let Q denote any even A-B square lattice. We proceed to show that model 
(1 j on Q is equivalent to an Ising model on a graph G which may be obtained from the 
A-B pattern on Q. 

Figure 1. The six different vertices on the square lattice. 
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Let m and n be the numbers of rows and columns of Q. The number of unrestricted 
A-B arrangements on any row of the lattice is 2". However, once the A-B arrangement 
on some row is fixed (say AAABBA . . . AB), then there are only two A-B arrange- 
ments (AAABBA . . . AB and its conjugate BBBAAB . . . BA) on its adjacent rows, 
which will not produce squares with an odd number of A points. Thus, the number of 
even A-B square lattices is 2m+n-1. For a given even A-B square lattice Q we can 
define a directed square lattice D. 

Definition : D has the same sets of points and lines as Q; however, the lines of D are 
oriented. The vertical lines in the i th  column of D are oriented down(up) if the top point 
of the ith column of Q is an A(B) point. The horizontal lines in the j th  row(j= 
1, 2, , . . , m )  of D are oriented to the right if the leftmost point in the j th row of Q and 
the leftmost point in the top rowG = 1) of Q are of the same type (both A or both B), 
otherwise they are oriented to the left. The square lattice digraph D has the following 
three properties. 

Property (1). The lines incident to an A point of D (corresponding to an A point of Q) 
are oriented as in vertex (3) or (4) ,  whereas the lines incident to a B point of D are 
oriented as in vertex (1) or ( 2 )  (compare the orientation at any B point in figures 2 , 3 ( a )  
and 4 ( a )  with the orientation of vertices (1) and ( 2 )  in figure 1). 

Property (2). D has a unique anticycle partition, i.e., the oriented lines of D can be 
partitioned into a set of line-disjoint anticycles; an anticycle is a directed cycle in which 
adjacent lines have opposite directions (for an example see figure 2).  

Property (3). The set of non-adjacent lines of an anticycle forms a dimer state of the 
anticycle; there are two such states. The lines of a dimer state are either all vertical 
(vertical dimer state) or all horizontal (horizontal dimer state). 

For a given square lattice digraph D we can, using property ( 2 ) ,  define a graph G. 

Definition : With every anticycle of D we associate a point of G and two points of G are 
connected by a line of multiplicity t if the corresponding anticycles of D have t points in 
common. 

From the definition of G it follows that C:=I tl = N, where L is the number of lines of 
G and rl is the multiplicity of a line 1 (the number of points of G depends on the A-B 
pattern of Q). Let the points of G incident with a line 1 be denoted l 1  and l2  and define 
spin variables on these points sll and s12 (= * 1). A spin configuration {s} on G is 
obtained by specifying the values of all these variables ( I  = 1 , 2 ,  . . . , I,). It is suitable to 
define an Ising model on G by 

The vertex model (1) on Q is equivalent to the Ising model (2) on G: 

(e) = z', (e). (3)  
In order to establish (3), we make use of the 'polymer' model on D (Malakis 1979). We 
may convert any six-vertex configuration on the square lattice into a bond graph by 
drawing a bond for each arrow pointing into an A point of the alternating A-B square 
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lattice (see Lieb and Wu 1972). The bond graph forms a configuration on non- 
intersecting polygons that cover all lattice points. Since, for model (l), w 3  = w4 = w ;  = 
w ;  = 0, some of the six-vertex configurations on Q have a zero weight. In consequence 
of property (1) of D, the bond graphs corresponding to non-zero terms of Z",e) are 
compatible with the orientation of D, i.e., the non-intersecting polygons are also circuits 
of D. The correspondence between the configurations of circuits on D and the vertex 
configurations C' (with a non-zero weight) of model (1) on Q is one-to-one. Further- 
more, the weight of a vertex configuration C' is w k, where k is the number of vertices of 
type (l), (2), (3), or (4) of C';  k is also the number of polygonal corners of the 
corresponding configuration of circuits on D. Finally, we can, using property (3) of D, 
establish a one-to-one correspondence between the configurations of circuits on D and 
the spin configurations on G. This can be accomplished if we represent the s = +l(-1) 
spin state of a point of G by the horizontal (vertical) dimer state of the anticycle of D 
corresponding to the point of G. The weight of a spin configuration {s} on G is w k, 
where k = Zf=] t l( l  - sllsI,) is again the number of polygonal corners of the configura- 
tion of circuits on D corresponding to the spin configuration {s} on G. Therefore, there 
exists a one-to-one correspondence between the non-zero terms of Z",(e) and the 
terms of Z', (e), such that corresponding terms have equal weights. This completes the 
proof of (3). 

As an application of (3), let us examine A-B patterns in which adjacent A(B) points 
form 'rectangles' with k l  points vertically and kZ points horizontally. Consider the 
following three cases. 

Figure 2. An A-B square lattice Q in which adjacent A(B) points form 2 x 2 'rectangles'. 
Arrows specify the orientation of D. The anticycle partition of D is illustrated by full and 
broken oriented lines. The lines of the graph G are the dotted lines (these lines form a 
square lattice with diagonal boundary conditions) and the small full lines (these lines 
connect each point of the 'diagonal'square lattice to a linear chain of kl - 1 = 1 points). The 
multiplicity of the dotted lines is 2, whereas the multiplicity of the small full lines is 4. 
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Case 1, k l  = kz. One can easily verify that model (1) on Q undergoes an Ising-type 
transition. The transition temperature T, depends on k l  and is located by 
Isinh(ekl/kT,)I = 1. An example ( k l  = k2 = 2) is given in figure 2. We note that the 
partition function Z’, (e) can be easily related to the partition function of the usual Ising 
model on a square lattice with diagonal boundary conditions. 

Case 2, kf # kz. The vertex model (1) on Q does not undergo a phase transition. 
This is suggested from the fact that G is ‘one-dimensional’ (for an appropriate 
definition of dimensionality, see Kasteleyn 1963). An example is given in figure 3 
(kl = 2, k2 = 1). The partition function can be calculated using the transfer matrix 
method; in the thermodynamic limit we find limm,n-rm ( l l m n )  ln(2;) = t In(1 + w4). 

Figure 3. 
‘rectangles’. ( 6 )  The graph G. The multiplicity of its lines is 2. 

( a )  An A-B square lattice Q in which adjacent A(B) points form 2x 1 

Case 3, kf = kZ = m = n. The vertex model (1) on Q is equivalent to the Ising model on a 
simple linear chain of m points (figure 4). However, in the appropriate thermodynamic 
limit, model (1) will show ‘frozen in’ behaviour, because at all temperatures the entropy 
per point (atom) is zero (the number of configurations is Z”, whereas the number of 
points is m’). We also note that the ‘polymer’ model on D, in this case, is the same as 
Nagle’s ‘dimer model B to a polymer model’ at maximum density (Nagle 1974). 

We guess that these three cases contain all possibilities of behaviour of model (1) on 
Q. Furthermore, since different parts of the A-B pattern on Q may satisfy case 1 with 

(U 1 Ibl 

Figure 4. ( a )  A square lattice in which all points are B points. ( b )  The graph G is a simple 
linear chain. The multiplicity of its lines is m. 
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different values of kl, multiple transitions are possible. The generalisation of (3) to an 
arbitrary A-B square lattice is not evident because property (1) of D is a consequence of 
the fact that Q is an even A-B square lattice. Finally, we point out that for e > 0 model 
(1) is antiferroelectric, and its Ising equivalent is ferromagnetic. 
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